Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response
Autores de INCLIVA
Participantes ajenos a INCLIVA
- Sánchez-Bernabéu, A
- Agúndez, AB
Grupos y Plataformas de I+D+i
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S, D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Copyright © 2025 Elsevier Inc. All rights reserved.
Datos de la publicación
- ISSN/ISSNe:
- 0891-5849, 1873-4596
- Tipo:
- Review
- Páginas:
- 378-399
- PubMed:
- 40185167
FREE RADICAL BIOLOGY AND MEDICINE ELSEVIER SCIENCE INC
Citas Recibidas en Web of Science: 5
Documentos
- No hay documentos
Filiaciones
Keywords
- Oxidative stress; Oxidative post-translational modifications (oxPTMs); Epigenetics; Histone lactylation; Inflammation; Immune regulation
Financiación
Proyectos y Estudios Clínicos
Test basados en péptidos spike-in y espectrometría de masas para la cuantificación de histonas circulantes y proteína APC, para el manejo clínico del paciente crítico.
Investigador/a Principal JOSE LUIS GARCIA GIMENEZ
DTS21/00193 . INSTITUTO SALUD CARLOS III . 2022
Hacia la comprensión de la heterogeneidad de la sepsis. Pronóstico a corto y largo plazo mediante epigenómica, proteómica e inteligencia artificial.
Investigador/a Principal JOSE LUIS GARCIA GIMENEZ
PI22/00481 . INSTITUTO SALUD CARLOS III . 2023
CREACIÓ I CARTACTERITZACIÓ CEL·LULAR I MOLECULAR DE NOUS BIOMODELS PER A L’ESTUDI DE LA SEPSIS.
Investigador/a Principal JOSE LUIS GARCIA GIMENEZ
INVEST/2023/232 . CONSELLERIA EDUCACION/INNOVACION,UNIVERSIDADES, CIENCIA Y SOCIEDAD DIGITAL/EMPLEO . 2023
Proteómica cuantitativa por espectrometría de masas para la identificación temprana de biomarcadores predictivos de eventos adversos en el síndrome coronario agudo.
Investigador/a Principal JOSE LUIS GARCIA GIMENEZ
DTS24/00094 . INSTITUTO SALUD CARLOS III . 2025
Cita
Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. García Giménez,JL, Cánovas Cervera,I, Nacher Sendra,E, Dolz Andrés,E, Sánchez Bernabéu,A, Agúndez,AB, Hernández Gil,J et al. FREE RADICAL BIOLOGY AND MEDICINE. 2025 junio 01. 233378-399. DOI:10.1016/j.freeradbiomed.2025.04.004. PMID:40185167.
Portal de investigación