Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study.

Autores de INCLIVA
Participantes ajenos a INCLIVA
- Nadal, E
- Ródenas-Navarro, AM
- Ortega, J
- Ródenas, JJ
Grupos y Plataformas de I+D+i
Abstract
Roux-en-Y gastric bypass (RYGB) is a treatment for severe obesity. However, many patients have insufficient total weight loss (TWL) after RYGB. Although multiple factors have been involved, their influence is incompletely known. The aim of this exploratory study was to evaluate the feasibility and reliability of the use of machine learning (ML) techniques to estimate the success in weight loss after RYGP, based on clinical, anthropometric and biochemical data, in order to identify morbidly obese patients with poor weight responses. We retrospectively analyzed 118 patients, who underwent RYGB at the Hospital Clínico Universitario of Valencia (Spain) between 2013 and 2017. We applied a ML approach using local linear embedding (LLE) as a tool for the evaluation and classification of the main parameters in conjunction with evolutionary algorithms for the optimization and adjustment of the parameter model. The variables associated with one-year postoperative %TWL were obstructive sleep apnea, osteoarthritis, insulin treatment, preoperative weight, insulin resistance index, apolipoprotein A, uric acid, complement component 3, and vitamin B12. The model correctly classified 71.4% of subjects with TWL < 30% although 36.4% with TWL = 30% were incorrectly classified as "unsuccessful procedures". The ML-model processed moderate discriminatory precision in the validation set. Thus, in severe obesity, ML-models can be useful to assist in the selection of patients before bariatric surgery.
Datos de la publicación
- ISSN/ISSNe:
- 2227-9059, 2227-9059
- Tipo:
- Article
- Páginas:
- -
- PubMed:
- 38927382
Biomedicines MDPI AG
Citas Recibidas en Web of Science: 3
Documentos
- No hay documentos
Filiaciones
Keywords
- RYGB; bariatric surgery; locally linear embedding; machine learning; obesity; predictive model; total weight loss
Financiación
Proyectos y Estudios Clínicos
Estudio de nuevos mecanismos inflamatorios y angiogénicos asociados a la obesidad grave morbida: papel del eje CXCR3 y los receptores RORs.
Investigador Principal: LAURA PIQUERAS RUIZ
PI15/00082 . INSTITUTO SALUD CARLOS III . 2016
A multidisciplinary project to advance in basic mechanisms, diagnosis, prediction, and prevention of cardiac damage in reperfused acute myocardial infarction.
Investigador Principal: VICENT BODÍ PERIS
PIE15/00013 . INSTITUTO SALUD CARLOS III . 2016
Modulación inmunofarmacológica de la inflamación sistémica asociada a desórdenes metabólicos. Búsqueda de nuevas dianas terapéuticas y síntesis de fármacos novedosos.
Investigador Principal: MARIA JESUS SANZ FERRANDO
SAF2014-57845-R . MINISTERIO ECONOMIA Y COMPETITIVIDAD . 2015
ESTUDIO DE NUEVOS EJES DE QUIMIOCINAS COMO POTENCIALES DIANAS DE INTERVENCION EN LA OBESIDAD Y LA RESISTENCIA A LA INSULINA.
Investigador Principal: LAURA PIQUERAS RUIZ
PI21/00220 . INSTITUTO SALUD CARLOS III . 2022
Cita
Nadal E,Benito E,Ródenas AM,Palanca A,Martinez S,Civera M,Ortega J,Alabadi B,Piqueras L,Ródenas JJ,Real JT. Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Biomedicines. 2024. 12. (6):1175. IF:3,900. (1).
Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Nadal E, Benito E, Ródenas AM, Palanca A, Martinez S, Civera M, Ortega J et al. Biomedicines. 2024 mayo 25. 12 (6):DOI:10.3390/biomedicines12061175. PMID:38927382.